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We consider the two-layer flow of immiscible, viscous, incompressible fluids in an 
inclined channel. We use long-wave theory to obtain a strongly nonlinear evolution 
equation which describes the motion of the interface. This equation includes the 
physical effects of viscosity stratification, density stratification, and shear. A weakly 
nonlinear analysis of this equation yields a Kuramoto-Sivashinsky equation, which 
possesses a quadratic nonlinearity. However, certain physical situations exist in two- 
layer flow for which modifications of the Kuramoto-Sivashinsky equation are 
physically pertinent. In particular, the presence of the second layer can mediate the 
wave-steepening instability found in single-phase falling films, requiring the inclusion 
of a cubic nonlinearity in the weakly nonlinear analysis. The introduction of the cubic 
nonlinearity destroys the symmetry-breaking bifurcations of the Kuramoto- 
Sivashinsky equation, and new isolated solution branches emerge as the strength of the 
cubic nonlinearity increases. Bistability between these new solutions and those 
associated with the Kuramoto-Sivashinsky equation is found, as well as the formation 
of a hysteresis loop from smaller-amplitude travelling waves to larger-amplitude 
travelling waves. The physical implications of these dynamics to the phenomenon of 
laminar flooding in a channel are discussed. 

1. Introduction 
Consider the flow of two superposed viscous, incompressible fluids in an inclined 

channel and separated by an interface. The fluids flow under the joint influence of 
gravity and an imposed pressure gradient. In this system, several possible physical 
mechanisms can lead to instability of parallel flow. One expects that inertially driven 
instabilities found in thin liquid films would be present, along with the mechanisms 
present when the fluids are distinct. Two-phase flow instabilities can be caused by 
stratification of density or by viscosity stratification through shear. 

The mechanism for the instability of thin liquid films has been studied since Yih 
(1955) and Benjamin (1957) analysed the linear stability for long waves. Benney (1966) 
derived a long-wave evolution equation describing the nonlinear interface motion. 
Smith (1990) described how initial perturbations on a thin film are driven by a 
perturbation shear stress at the interface with growth provided by inertia. Joo, Davis 
& Bankoff (1991) integrated Benney’s equation numerically to find that waves can 
steepen and increase to a range where the long-wave assumptions cease to be valid. 
Waves steepen since wave speeds increase with the interfacial height, that is, peaks 
travel faster than troughs. The net result of this effect is that more fluid is ‘pumped’ 
into the peak from the trough, until hydrostatic effects balance the growth. When the 
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upper phase is no longer passive, the perturbation shear stress caused by the deflection 
of the interface will change. Chang (1986) used a phenomenological model to allow for 
the imposition of a turbulent shear stress on the interface by an otherwise passive 
second phase, and derived a Kuramoto-Sivashinsky (KS) equation, valid for long 
waves, in a frame moving with the linear phase speed. Chen & Chang (1986) then 
investigated spatially periodic solutions of this equation and found that as inertial 
effects are increased there are transitions to chaotic behaviour. 

Since then, the dynamical behaviour of spatially periodic solutions to the KS 
equation has been explored at length (e.g. see Kevrekidis, Nicolaenko & Scovel 1990; 
Papageorgiou & Smyrlis 1991 ; Demekhin, Todarev & Shkadov 1991 ; Scovel, 
Kevrekidis & Nicolaenko 1988; Aston, Spence & Wu 1992a, b). The initial dynamics 
beyond linear theory consists of a primary steady-state branch, which then loses 
stability in a symmetry-breaking bifurcation to a pair of travelling waves as the 
bifurcation parameter is increased. These travelling waves are the images of each other, 
and travel in opposite directions with the same phase speed. However, the bifurcation 
to travelling waves is a pitchfork, which is known to be structurally unstable to certain 
small perturbations. Later, we shall focus on small and large perturbations of the KS 
equation, and their physical consequences. 

For the case of two-layer flow in a horizontal channel, the initiating mechanism for 
long-wave instability is different. The viscosity-stratification instability found by Yih 
(1 967) is manifested through differences in the tangential-velocity gradient across the 
interface. Density stratification acts to modify stability, via a Rayleigh-Taylor 
mechanism. Independently, Schlang (1984) and Hooper & Grimshaw (1985) derived 
KS equations to describe small-amplitude motion of the interface in a horizontal 
channel. Further, Schlang (1984) derived a similar equation for two cocurrent fluids in 
a vertical channel, but did not consider countercurrent flow, or certain other cases 
which we consider in this work. In a study of the thin-annular limit of vertical core- 
annular flow, Papageorgiou, Maldarelli & Rumschitzki (1990) derived a KS equation, 
containing an additional integral term representing the effect of the core flow on the 
interfacial motion; the motions in the core are not necessarily long waves. Numerical 
integration of this equation revealed large-amplitude travelling waves in regions of 
parameter space where the KS equation has chaotic solutions. 

A phenomenon called flooding is found in countercurrent flow. It is characterized as 
the transition from countercurrent flow to cocurrent flow adverse to gravity as the 
adverse pressure gradient is increased. During this transition, a variety of interfacial 
dynamics is observed, ranging from possibly chaotic small-amplitude waves to large- 
amplitude waves that impede the flow of the second phase. Countercurrent flow returns 
only after the pressure gradient is decreased below the flooding point, a process which 
is called flow reversal. Bankoff & Lee (1986) reviewed the wide variety of theoretical 
and experimental attempts to explain the phenomenon, and argued that the analyses 
are inconclusive. Fowler & Lisseter (1992) have used a phenomenological model to 
examine flooding in core-annular flow, and found a hysteresis loop between 
countercurrent and cocurrent states. 

Our motivation in the present work is to find a fundamentally based criterion for 
laminar flooding. In this quest, we fix the total volumetric-flow rate and derive a 
strongly nonlinear interfacial equation valid in a long-wave regime. A small-amplitude 
analysis of similar equations for single-phase thin films local to a laminar solution 
yields a Kuramoto-Sivashinsky equation. However, in the two-fluid problem, certain 
physical situations require a different scaling that leads to an additional cubic 
nonlinearity to the KS equation. We compare the bifurcation diagrams for spatially 
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periodic solutions of these two equations. In particular, we find that the cubic 
nonlinearity can lead to a hysteresis loop between smaller-amplitude waves and larger- 
amplitude waves. Such a transition is known to occur near the onset of flooding. We 
compare the limit in which both nonlinearities are physically important to a 
phenomenologically based turbulent model, which is used in predicting the onset of 
flooding. Qualitative agreement is seen between the two models. 

This paper is organized as follows. In $2, we derive a strongly nonlinear evolution 
equation describing the motion of the interface for long waves. Then, we perform a 
weakly nonlinear analysis on this equation to derive a Kuramoto-Sivashinsky 
equation in $3.  Further, we discuss how certain physical situations allow for the 
inclusion of both quadratic and cubic nonlinearities in the weakly nonlinear analysis. 
In $4, we perform a bifurcation analysis for the spatially periodic solutions of both 
small-amplitude equations as the magnitude of the cubic nonlinearity is increased. In 
$ 5 ,  we compare the limit where the cubic nonlinearity is pertinent to a phenom- 
enological model used in the prediction of turbulent flooding. We close with a 
discussion of the physical implications of these results to the phenomenon of flooding 
in 96. 

2. Derivation of the evolution equation 
Two immiscible, incompressible fluids, labelled i = 1,2, fill an inclined channel of 

depth a’, as shown in figure 1. The equations that govern this system are continuity and 
Navier-Stokes : 

(2.1 a) v . u(i) = 0, 

(2.1 b)  

where di), and p @ )  are the velocities and pressures of the fluid in each phase, and pi and 
pi are the corresponding dynamic viscosities and densities. The velocities satisfy the 
no-slip boundary conditions on the channel walls: u(l) = 0 on z = 0 and u@) = 0 on 
z = d, as well as the following interface conditions at z = h(x, t ) :  

[n * T .  n] = CTK, 

[ t  * T * n] = 0, 

[u * n] = 0, 

[u * t] = 0, 

(2.2a) 

(2.2b) 

(2.2 c) 

(2.2d) 

(2.2 e )  

where n is the unit normal pointing from phase 1 into phase 2, t is the unit tangent 
vector at the interface, T(’) is the stress, CT is the interfacial tension between the two 
fluids, and K is twice the mean curvature of the interface, given by 

K = - hzz( 1 + hi)--3’2. 

The jump [f] of the quantityfacross the interface is denoted by Lf] = f z ) - f l ) .  
The constant flow rate Q for the full channel is given by 
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By integrating the continuity equation across the channel, one can show that 

We scale lengths by d, time by d2/v l ,  velocities by d/vl, and pressures by p1 vI/d2, 
where v1 is the kinematic viscosity of the lower fluid, to get the dimensionless governing 

with the boundary conditions at the channel walls 

u(l) = 0 on z = 0, 

u(') = 0 on z = 1 ,  

and at the interface z = h(x, t )  

hxx 
{(h: - 1 )  U ,  - hx(u, + w,)} = - 5 

1 +h: ] ( 1  +h33/2 '  

[E{(l -h~)(u,+wx)-4hxux} = 0, 1 

and with the global constraint 

udz = Q, 

(2.4a) 

(2.4b) 

(2.5a) 

(2.5b) 

(2.6a) 

(2.6b) 

(2.6c, d )  

(2.7) 
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which is equivalent to the interfacial condition of continuity of normal velocity. The 
following parameters appear : 

Q = - ,  Q 
V1 

PZ p=-7 
P I  

Pz 
PI 

p = - ,  

(2 .8~)  

(2.8b) 

(2.8 c)  

(2.8d) 

(2.8e) 

From the full linear stability analysis of this problem, Tilley, Davis & Bankoff (1994) 
found that, for a broad range of parameters, the primary instability from the flat- 
interface solution will occur at zero wavenumber as the total volumetric flow rate is 
increased. Hence, we are concerned with the stability of the interface to long-wave 
disturbances, and we let 0 < F 4 1 be a measure of the wavenumber. We let ( = ex, 
5 = z ,  and since we expect all terms in the kinematic boundary condition to be of the 
same order of magnitude, we introduce a slow timescale 7 = et. We assume a regular 
perturbation expansion in u : 

(2.9) 

(2.10) 

(2.11) 

s= e2a. (2.12) 

U(’)(& [,7) = U f ’ ( [ ,  5,7) -k E M ? ) ( &  ([, 7) -k € 2 U t ) ( &  [, 7) + . . . . 
This assumption and the continuity equation suggest that 

{, 7) = F{wp(c, Q 7) + ewp((, [, 7) + €2Wf)(C, 5,7) + . . . }. 

p y t ,  Q 7) = €--1{P;) (t, 5,7) + €Pf)(<, Q 7) + eZPf’([, {,7) + . . . }. 
Finally, we expect downstream pressure gradients to be of unit order. Thus 

We assume large surface tension, and define the unit-order parameter S: 

These assumptions induce the following boundary conditions : 

= (1) = 0 on < = O ,  (2.13~) ws 
4 2 1  = wj ( 2 )  = 0 on [ =  1, (2.13b) 

At the interface 5 = h(c, 7), the jump in the tangential component of the velocity 

[u,l = 0, (2.14a) 

[u,l = 0, (2.14b) 

(2.14 c )  

f o r j =  0,1,2, .... 

becomes 

[u, + wrJ h,I = 0, 
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Similarly, the jump in the tangential stress at the interface can be written in the form 

(2.15a) 

[ ~ U 1 < ]  = 0, (2.15 b) 

(2.1 5 c) [3u,,+w0,-u,,h;)] = 0, 

The normal-stress condition at the interface can also be written as 

[Pol = 0, 
[PI1 = Sh,,, 

(- uOt- h, u,,,)] = 0, 

(2.1 6 a) 
(2.1 6 b) 

(2.1 6 c) 

Finally, the integral constraint becomes 

(2.17a) 

(2.1 7 b)  

With these boundary conditions at each order, we obtain a sequence of linear 
problems : 

O(e-1) : (p l /pz)  Pb";' = 0, (2.1 8 a) 

Pi1) = Z'r) (6 = h([ ,7)) ,  (2.18b) 

( v i / v l )  uf&- (pl/p,) P$ + G sin @) = 0, (2.19 a) 

Col/Pi) pfi = - Gcos @) (6 = h(6,7)), (2.19 b) 
u p  = 0 ( 6 =  O), (2.19~) 
u p  = 0 (<= l), (2.19d) 

[CUiIllLl) Uo<l = 0 (5  = 4 6 ,  7) ) ,  (2.19e) 

O( 1) : 

[Uol = 0 (6 = 711, (2.19.f) 

55 (6 = a, 711, (2-19g) py)  -p(z) = - sh  

~ ~ ~ o d 6  = Q .  (2.1 9 h) 

The solution to the O(e-l) equation is that P r )  = P r )  = Po([ ,7) .  The O(1) x- 
momentum equation (2.19) yields, 

(2.20a) 

(2.20b) 
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which satisfy the no-slip boundary conditions (2.13). With the continuity of shear- 
stress and tangential velocity conditions applied at the interface, we have a second- 
order linear system to solve for a, and a,. The result of this calculation yields: 

where 

(h-  I)[@- 1)-2ph] 
@ - l ) h + l  ' a,, = 

h2 
= @ - 1) h + 1 

However, we still need to solve for the leading-order pressure gradient. We use the 
integral constraint (2.7) to find that 

where 

+ I11 
f,(h,P) = (A- I).(r.[ 2 b - l ) h + l  

h-1 1 (1-p)h(h-1) 

(2.21) 

(2.224 

(2.223) 

Finally, we can write the leading-order expressions for the x-component of the velocity 
as 

The leading-order z-momentum equation (2.19) yields 

Pi'' = a, - G ~ C O S  p, 
PjZ) = a, - G ~ ~ C O S  p, 

(2 .24~)  

(2.24b) 

where the a, are the lubrication pressures generated by the deformed interface. 
The boundary condition (2.16b) at 5 = h((, 7) gives the relation a15-a2t = @[, where 

3 F L M  211 
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Qg = {(I -p) hGcosP- ShSE)g. At O(e), the continuity and x-momentum equations 

w(i) = - (0  (2 .25~)  
yield 

05 uo,, 

(2.25 b) 

6 = 0: u(’) 1 = 0, (2.25 c)  

6 = 1: u(2) 1 = 0, (2.25d) 

< =  h :  .I“)- u1 (1) = 0 (2.25 e) 

UlC (1) = 0 3 (2.25.f- 1 

iuld< = 0. (2.25g) s 
With a similar analysis as the previous order, we use the interfacial conditions and the 
integral constraint to arrive at a unique solution to up) (see Appendix A). Since we are 
primarily concerned with deriving an evolution equation for the interface, we give only 
the form of ujl): 

p[F2’(h) - (h - 1) Ft) (h)]  - [pF”(h) - (h - 1 )  F2)(h)] 
h, 6, ( p - l ) h +  1 

+F1’(Qh,+ 

where @ is the velocity generated by the nonlinear interaction of the basic state with 
itself in (2.251, 

is an inertial-flow rate, and A = (p, p, G, P, S) .  The elements of this flow rate include a 
contribution from the perturbation flow rate generated by F(h), and flow rates 
generated by jumps in the gradients of the shear stress and tangential velocity across 
the interface. Finally, to derive the evolution equation for the interface h([ ,7 ) ,  we use 
the kinematic boundary condition (2.2) to obtain 

h, + A(h, Q,  A )  h, + 4[I(h,  Q,  A )  + 17,(k A ) ]  hg + C(h, A )  hgfg)g = 0, (2.26) 

where A ( h , Q , A ) ,  I ( h , Q , A ) ,  17,(h,A), and C(h,A)  are discussed in Appendix A. 
Advection effects at leading-order are represented by A(h, Q, A ) ,  I(h, Q, A )  is the result 
of inertial effects, IZ,(h, A )  represents hydrostatic-pressure effects, and C(h, A )  
corresponds to capillary effects. This equation is a generalized version of the Benney 
(1966) equation for single-phase falling films. For falling films, inertia provides the 
initial mechanism for linear instability, with advection contributing to wave steepening 
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of the growing and propagating disturbance. These mechanisms are also present in the 
two-layer case with the possibility that the presence of the second phase may enhance 
or retard the growth of the disturbance. It is interesting to note that these mechanisms 
act on different timescales, with advection effects occurring on a faster timescale than 
the remaining mechanisms. However, the quasi-linear leading-order equation reveals 
that the timescale of advection is dependent on the initial conditions of the interface. 
We shall see in the next section one example of this behaviour. 

Equation (2.26) contains various special cases. One recovers the single-phase falling 
film result (see Joo et al. 1991) when Pot = ,u = p = 0. Further, a linear analysis of the 
equation about h = $, with p = 1 for a horizontal channel, /? = 0, gives the result of Yih 
(1967) for instability induced by viscosity stratification. The long-wave linear-theory 
results of Yiantsios & Higgins (1988) for the horizontal channel, and of the inclined 
channel described in Tilley (1994) have also been verified. The symmetry checks 
described in Charru & Fabre (1994) have also been verified in the horizontal case. 

We have used a long-wave theory to reduce the Navier-Stokes equations in two 
phases, coupled by an interface, into a single partial difference equation for the height 
of the interface. The velocity and pressure fields in each phase can be determined once 
the solution to (2.26) is known. In order for a solution of this equation to be physically 
relevant, it must satisfy the assumptions that were needed to derive the equation from 
the full system. In particular, the solution to (2.26) must have a small slope, or h, = 
0(1), in order for the solution to be physically pertinent. In the next section, we 
examine small-amplitude solutions of (2.26), and determine how the behaviour of these 
solutions change as certain parameters are varied. 

3. Weakly nonlinear analysis 
For the physical system we are considering, there are several methods by which the 

two fluids can be forced through the channel. One manner is to fix the Reynolds 
numbers of both fluids, or equivalently the volumetric-flow rates. These constraints 
require that the pressure gradient be determined by the solution. A second method is 
to fix one of the Reynolds numbers, and also fix the overall pressure drop in the 
streamwise direction. In this case, the volumetric-flow rate of the second fluid is 
determined by the solutions. In general, there are three degrees of freedom to drive the 
flow of both phases, two of which must be chosen and the third is determined from the 
solution. The evolution equation of $2  was derived under the condition that the total 
volumetric-flow rate is fixed. 

Owing to the complexity of the evolution equation described above, we consider a 
small-amplitude analysis in a neighbourhood slightly beyond the linear neutral- 
stability boundary. It is convenient from the above derivation to let h, and Q determine 
the flow rate of each phase. A Kuramoto-Sivashinsky (KS) equation can be derived in 
the same manner as Hooper & Grimshaw (1985) did in the case for a horizontal 
channel local to the laminar state h((, 7) = h,. From their analysis, our equation takes 
the form 

( 3 . 2 ~ )  

(3.2b) 

( 3 . 2 ~ )  
3-2 
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FIGURE 2. Parametric plot of where the wave-steepening coefficient vanishes for an air-water system, 
where aA/3hO > 0(< 0) in the unshaded (shaded) region. Notice that the scaling of the total 
volumetric-flow rate is dependent on the gravitational effects in the direction of the channel walls. 

However, there are situations in which 

vanishes, where A ,  p , ,  and p z  are shown in Appendix A. We call (3 .3)  the wave- 
steepening coefficient. Countercurrent flows fall into the category in which the wave- 
steepening coefficient is small (see Appendix A), but one also finds that this condition 
is valid for certain horizontal flows, which are necessarily cocurrent. In figure 2, the 
shaded regions denote where this wave-steepening coefficient is negative in the mean 
interfacial height versus scaled total volumetric-flow rate plane for an air-water 
system. Note that the density ratio, gravity, and the angle of inclination are only 
present in the scaling of the total volumetric-flow rate, while the zero of the coefficient 
is a result of the remaining physical quantities. In the context of single-phase thin films, 
this coefficient is always bounded away from zero. For two-layer flows, when 
(aA/ah,) (h,, Q,  A )  is near zero, cubic terms become important. 

Let us consider the possibility that 

i3A 
- (h,, Q,  A )  = P A I ,  A ,  = O( l), 
ah0 

( 3 . 4 4  

(3.4b) 

(3.44 

(3 .4d)  

If we substitute this ansatz into the evolution equation (2.26), we find that at 0(e3”) :  

HT + A ,  HH, + A ,  WHY + B(ho, A )  HYY + C(h,, A )  HYyyy = 0, ( 3 . 5 )  
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where 

This is a generalization of the KS equation, given the inclusion of the cubic 
nonlinearity. Balmforth (1993, private communication) has posed a general family of 
evolution equations, a special case of which is equation (3.5). He has considered this 
equation in an extended domain, and found a countable set of solitary-wave solutions. 
However, to the best of the authors’ knowledge, this is the first physical situation to 
be identified in which the cubic nonlinearity is important. 

In order to simplify the analysis of this equation, we introduce the new timescale 

(3.6) 

(3.7) 

t = C(h,, A )  T, 

ut + u,,,, + hu,, + auu, + yu2u, = 0, 

and let x = y ,  u = H to get 

where 

is the ratio of inertial and hydrostatic effects to capillarity, and 

(3.10) 

are the ratios to capillarity of the first and second variations of advection with respect 
to mean interfacial height. For easy reference, we shall call (3.7) the 3KS equation. 

The KS equation, which has y = 0, possesses translational, reflectional, and Galilean 
invariances. Translational invariance is present in the full problem, since the streamwise 
coordinate is an extended domain and the Navier-Stokes equations are based on 
conservation laws. Hence, it is present in the KS equation. A generalization of 
reflectional symmetry in the KS equation is seen through the property of replication 
(see Scovel et al. 1988): if (u(x,  t ) ,  A, a)  forms a solution set, then so does (ku(kx, k4t), 
k2h, k2a). Reflectional invariance is seen for k = - 1. 

The 3KS equation, which has y + 0, retains translational invariance, but reflectional 
and Galilean invariances are absent. A modified replication property exists: if (u(x, t ) ,  
A,  a, y )  is a solution, then so is (ku(kx, k4t), k2A, k2a, ky) .  Thus, we need only investigate 
y 2 0 to find all solutions with respect to y. In addition, a nonlinear invariance exists 
for y + 0: if u(x, t )  is a solution, so is -a /y-  u(x, t ) :  

(3.11) 
Y 

To contrast the behaviours of the KS and 3KS equations, we perform a bifurcation 
analysis on the 3KS equation for spatially periodic solutions as the magnitude of the 
cubic nonlinearity y is increased. 

a 
~ ( x ,  t )  + - - - U(X, t) ,  

4. Bifurcation analysis for spatially periodic solutions 
The KS equation has been the subject of extensive study. Kevrekidis et al. (1990) 

considered the K S  equation with periodic boundary conditions, and found steady-state 
bifurcations from the basic state u = 0, secondary bifurcations to travelling-wave 
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FIGURE 3. Bifurcation diagram for steady-state, spatially periodic solutions of the Kuramoto- 
Sivashinsky equation : -, stable solution branches; ---, unstable solution branches; 0, 
bifurcations to travelling-wave solutions, shown in the next figure; + , bifurcations to oscillatory 
solutions. The labels correspond to the calculated bifurcation-point values listed in table 1. 

solutions, and tertiary bifurcations to modulated travelling-wave solutions. As the 
bifurcation parameter h is increased further, period-doubling occurs, leading to an 
intricate web of possible dynamical behaviour (see Demekhin et al. 1991 ; Aston et al. 
1992a, b). 

We are interested in finding the effect that the cubic nonlinearity has on the 
bifurcation diagram of the KS equation with periodic boundary conditions. With this 
in mind, and to compare with previous works of the KS equation, we set y = 0, and 
let 01 = A, since the KS equation can be rescaled to depend only on a single parameter. 
We review this diagram as a point of reference. Since we are interested in periodic 
solutions with a fixed total volumetric-flow rate, we consider only zero-mean solutions 
to the KS equation and the 3KS equation. 

Bifurcation points occur on the basic state u = 0 for h = n2, yt = 1,2, .  . . . An analysis 
local to these bifurcation points yields a solution of the form 

u - A,(T)sinnx 

at each point, where A,(T)  solves a Landau equation (see Appendix B). This is one of 
a family of solutions, since any spatial phase shift in the solution is also a solution due 
to translational invariance. 

Figure 3 shows the bifurcation diagram for steady solutions. Stable steady states are 
shown as solid curves, while the dashed curves denote unstable steady states. 
Bifurcations to travelling-wave solutions, whose branches are shown in figure 4 for 
clarity, are marked by diamonds for both figures. The crosses in both figures denote 
bifurcations to time-periodic solutions (either oscillatory states or modulated travelling- 
waves), while the square represents a period-doubling bifurcation. The labels of the 
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5 I0 

A 
15 20 

FIGURE 4. Spatially periodic, travelling-wave-solution branches of the Kuramoto-Sivashinsky 
equation: ~ , stable solution branches; ---, unstable solution branches; + , bifurcations to 
modulated-travelling-wave solutions ; 0, location of a period-doubling bifurcation. Labels 
correspond to table 1. 

TDB KNS (1990) ASW (1992a, b) DTS (1991) 
Bifurcation point h h = fa = 1a = a-2 

SB 1 3.250965 3.251 25 3.25096 3.2500 
K1K2 4.03496 4.034975 4.03624 
MTWl 4.349 34 4.349 75 4.349 475 4.3493 
MTW2 13.2121 13.213 5 
osc 1 7.58633 7.587 5 7.568 
o s c 2  8.574765 8.575 __ 
OSC3 12.747 6 12.724 12.73 
OSC4 16.707 4 - 16.673 
SS2a 5.639075 5.63975 5.63802 
SS2b 13.222 72 13.2225 13.127 
ss2c 15.9342 15.934 
SB2a 8.009 68 8.0125 8.00966 7.9349 
SB2b 13.003 8 13.005 13.00469 
SB2c 14.123 95 - 14.123 86 14.02 
SB2d 14.768 10 14.679 8 
LP 1 9.058 54 9.058 75 
LP2 8.542 285 8.5423 - 
PD 1 13.035 55 - 13.035 55  13.03296 
PD2 17.48108 17.48108 - 

TABLE 1. Comparison of bifurcation points of the Kuramoto-Sivashinsky equation with previous 
results. Bifurcation-point labels refer to figures 3 and 4. TDB: our results; KNS, Kevrekidis, 
Nicolaenko & Scovel; ASW: Aston, Spence & Wu; DTS: Demekhin, Todarev & Shkadov 
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FIGURE 5. KS right-travelling-wave solution for h = 4.349337. 

bifurcation points refer to table 1, in which we compare our numerical results to those 
of previous studies. 

We note that the basic state u = 0 loses stability for h > 1. From the pitchfork 
bifurcation at h = 1 ,  a steady-state branch P = 1 emerges. Following this branch, a 
symmetry-breaking bifurcation occurs (see label SB1 in figure 3), from which a branch 
representing a pair of asymmetric travelling waves emerges, as shown in figure 4. These 
waves propagate with the same speed, but in opposite directions, and each is locally 
stable. The spatial structure of this travelling wave is shown in figure 5 .  The primary 
steady branch loses stability after this bifurcation, and coalesces with the primary 
steady-state branch n = 2 near h = 4 (see K1K2 in figure 3). 

The travelling-wave branch in figure 4 undergoes a subcritical bifurcation (not 
shown) to unstable modulated travelling waves (see MTW 1). The travelling-wave 
branch loses stability after this bifurcation. The modulated travelling-wave solution, as 
described in Aston et al. (1992b), represents an oscillation between two spatial 
structures, and terminates in a heteroclinic orbit. 

Following the unstable steady bifurcation solution n = 2 from the basic state at 
h = 4, and after the termination of the n = 1 steady-state branch, there is an unstable 
steady bifurcating solution, denoting in figure 3 as SS2a. The n = 2 branch then 
becomes stable, until a bifurcation to oscillatory solutions occurs (see OSCl in figure 
3). The further structure of this branch will not be considered in detail, but is shown 
for comparison with previous works. 

The steady branch which bifurcates from the branch n = 2 undergoes bifurcation to 
travelling waves at h = 8.009 and h = 14.1239, labelled SB2a and SB2c in figure 3, 
between which two limit points are seen. It should be noted that the tangent bifurcation 
was not detected by the method described below, although the full branch was 
obtained by other means. We show the steady and travelling wave bifurcation 
diagrams simultaneously in figure 6 .  Table 1 shows a comparison of our results, TDB, 
with those of previous works. 
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FIGURE 6. Bifurcation diagram of the KS equation with steady-state and travelling-wave branches 
displayed : -, stable solution branches ; ---, unstable solution branches ; 0, symmetry-breaking 
bifurcations. 

To determine the bifurcation diagram for the KS equation, as well as the 3KS 
equation, we use a Galerkin approximation 

N 

u(x, t) x C ak(t)eikz 
k=-N 

to arrive at a system of ordinary differential equations, 
N 

uik(t) + (k4 - hk') ak ++i hk C aj akPj 
I=-N 

N N 

+fir C (k - I )a ,  C ajak-j-z = 0 (4.2) 

We solve this system using a phase condition described in Aston, Spence & Wu (1991), 
especially developed for algebraic systems with reflectional and translational 
symmetries. Two appropriate examples of this phase condition are as follows: 

(k = 1,2 ,..., N ) .  
Z=-N j = - N  

N 

C ja; = 0, 
j - -N 

(4 .3~)  

(4.3 b) 

In essence, these conditions alter only the eigenvalue corresponding to translational 
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FIGURE 7 .  Bifurcation diagram for the 3KS equation with y = 0.1 : -, stable solution branches; 
___ , unstable solution branches. Notice that all the solutions are travelling-waves, and that the 
symmetry-breaking bifurcations shown for the KS equation are destroyed. The upper branch of the 
imperfection corresponds to the left-travelling wave. 

invariance, while leaving the remaining eigenvalues unaffected. By choosing such a 
phase condition, we can solve (4.2) using standard continuation packages. The 
bifurcation package AUTO (Doedel 1981) is used to determine the bifurcation 
diagrams. Starting points for this package were obtained by a perturbation analysis 
local to the bifurcation points on the basic state. Further, results were compared to an 
integration of the full 3KS equation, using a pseudo-spectral method in space, and 
Gear’s method in time, with integration errors on the order of lop8 (see Hyman & 
Nicolaenko 1986). In the numerical results shown below, we use twenty-four spatial 
modes, i.e. N = 24. 

When the cubic nonlinearity is included in the KS equation, the local analysis of 
bifurcations from the basic state shows that the real eigenvalue in the case y = 0 
becomes complex, resulting in a travelling-wave bifurcating solution of the same form 
as the steady solution, but with non-zero wavespeed c, 

c - yIu12. 

This effect is seen throughout the bifurcation diagram. In figure 6, we show the full 
bifurcation diagram of the KS equation with both steady-state solutions and 
travelling-wave solutions. Stable solutions are shown as solid curves, and dashed 
curves denote unstable solutions. Diamonds show bifurcation points to travelling- 
wave solutions. Figure 7 shows a similar portion of the bifurcation diagram of the 3KS 
equation for y = 0.1. The primary branch bifurcation at h = 1 is initially a right- 
travelling wave. However, as the bifurcation parameter gradually approaches the 
travelling-wave bifurcation point, the wavespeed becomes negative, revealing that the 
primary branch is a perturbation of the left-propagating travelling wave of the KS 
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FIGURE 8. Bifurcation diagram of the primary solution branch for 3KS equation for increasing values 
of y .  Note the imperfect bifurcation in the neighbourhood of h = 3.25: -, stable solution 
branches; ..., unstable solution branches. Curves with the diamonds are for y = 0.1, while those with 
the crosses are for y = 0.3, and the simple curves are for the KS equation y = 0. 

equation. The corresponding perturbation of the right-travelling wave is also locally 
stable. Note that not only is the symmetry-breaking bifurcation on the primary branch 
destroyed, but that all of the bifurcations denoted by diamonds in figure 6 are lost 
throughout the diagram. This behaviour is generic to pitchfork bifurcations, such as 
the symmetry-breaking case here, and it has been seen in several contexts (Matkowsky 
& Reiss 1977; Golubitsky & Schaeffer 1985; Aston 1991). The travelling waves still lose 
stability through a bifurcation to time-periodic solutions, as in the case y = 0. We also 
remark that the period-doubling bifurcations are not destroyed in the 3KS equation. 
Further, figure 8 shows the bifurcation diagram for the primary solution branch of the 
3KS equation with y = 0, y = 0.1 and y = 0.3. We notice that the range of values of 
h for which the left-travelling wave is stable is increased as y is increased, as shown in 
figure 9. For the right-travelling wave, this range is decreased. Hence, we see that the 
result of the inclusion of the nonlinearity not only affects the symmetry-breaking 
bifurcations of the KS equation, but also changes the domains of stability of the 
travelling-wave solutions. We shall notice this effect as the value of y is further 
increased. In the remainder of this study, we shall concentrate on the behaviour of the 
primary branch as the strength of the cubic nonlinearity is increased. 

A new solution emerges as the strength of the cubic nonlinearity increases. We find 
an elliptic point at (A ,  y )  = (12.37,0.25249) from which an isola is formed. This new 
solution branch represents ' large '-amplitude travelling waves with the upper branch of 
the isola being locally stable (see figure 10). The size of the isola is sensitive to changes 
in y, since figure 10 shows the branch for y = 0.255566, just slightly above its 
formation at y = 0.25249. This solution is present only for sufficiently large values of 
y, and it is not a solution to the KS equatioin. With a new stable solution in this 
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FIGURE 9. Bifurcation diagram of the primary solution branch for the 3KS equation with wavespeed 
plotted against the bifurcation parameter: -, stable solution branches; ---, unstable solution 
branches. The generic form of the pitchfork imperfection is displayed for small y. Simple curves 
denote the wavespeed for the KS solution, while those with diamonds denote the 3KS solutions for 
y = 0.1, and those with the crosses denote 3KS solutions for y = 0.3. 
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FIGURE 10. The primary and isola solution branches for y = 0.255566: -, stable solutions; 
..., unstable solution branches. Notice how sensitive the size of the isola is to variations in y. 
( A ,  y )  = (12.37,0.25249) is the place of elliptic-point formation. 
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FIGURE 11. Hyperbolic-point bifurcation in the neighbourhood of y = 0.43. Notice that the isola 
solution at y = 0.41 merges with the stable primary bifurcating solution: ..., unstable solution 
branches; -, stable solution branches. 

interval, the domain of attraction for solutions corresponding to solutions of the KS 
equation are reduced. The implications of this result to multiphase flow will be 
addressed shortly. 

Continuing to increase y, we find that the isola increases in size, with the unstable 
portion of the curve approaching the primary bifurcating solution. We show the 
bifurcation diagram for the isola and the primary bifurcating solution in figure 11 for 
y = 0.41 and y = 0.45. Notice for y = 0.41 that both the larger-amplitude travelling 
wave and the primary travelling wave are stable over a wide range of A. This bistability 
is of interest physically, since it suggests that significant deflections from a travelling- 
wave state may lead to attraction to another travelling-wave state. This effect is 
promoted as y is increased. When y = 0.43, the primary branch and the isola merge 
through a hyperbolic-point bifurcation, as shown in figure 11. The result of this 
coalescence is a hysteresis loop along the primary branch. That is, if the bifurcation 
parameter h is increased past the location of the limit point at h = 3.77, a jump 
transition from the smaller-amplitude travelling wave to the larger-amplitude travelling 
wave will occur. Similarly, if the bifurcation parameter is decreased past the limit point 
at h = 3.27 while on the larger-amplitude branch, a jump transition will occur to the 
smaller-amplitude travelling-wave branch. In figure 12, we show the locally stable 
travelling-wave solutions of the upper and lower branch with h = 3.0 and y = 0.5. 
Notice the differences in amplitude between the two. Further, the speed of the larger 
wave is c = 12.80, while that of the smaller wave is c = -0.5. 

Further increases to y result in the branch returning to a supercritical form, with the 
upper part of the branch displaying a quartic relation between the norm of the solution 
and h (see figure 13). This agrees with local asymptotic results of the primary 
bifurcation when a is small. One expects this, since the small-a equation can be rescaled 
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FIGURE 12. Waveform shapes for solutions along the primary branch. Here, h = 3.0 and y = 
Notice the difference in magnitude. 
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FIGURE 13. Bifurcation diagram for the 3KS equation for increasing values of y :  -, stable solution 
branches; ..-, unstable solution branches. Notice that the fold singularities are lost, and a quartic 
relation between the norm and h is obtained. 
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FIGURE 14. Bifurcation diagram for the 3KS equation with wavespeed plotted against the bifurcation 

parameter for larger y :  -, stable solution branches; '. ', unstable solution branches. 

to the 3KS equation with y large. The effect on phase speed from increasing the 
strength of the cubic nonlinearity is shown in figure 14. 

Through the property of replication, one can understand the stability of spatially 
periodic solutions of the KS equations to subharmonic disturbances (see Frisch, She 
& Thual 1986). From their analysis, one finds that there exists a set of wavelengths to 
which the cellular solutions of the KS equation are unstable. One could perform a 
similar analysis on the 3KS equation. However, with its modified replication property, 
there is the possibility of bistability. Even if travelling-wave solutions of the 3KS 
equation corresponding to the steady-state solutions of the KS equation are unstable 
to certain subharmonic disturbances, the isolated solutions may be stable to these 
disturbances. The results of Papageorgiou et al. (1990) seem to suggest something of 
this nature, with the addition of a nonlinear integral term to the KS equation. This 
equation describes the thin-annular film limit of core-annular flow of two distinct 
fluids. They report that with the inclusion of the integral term to the KS equation, 
situations which would yield chaotic solutions for the KS equation instead yield 
transients which are attracted to travelling-wave states. 

5. A comparison of static and dynamic flooding criteria 
In this section, we review the separated-cylinders model of Wallis (1969). The model 

was originally developed to explain the flooding phenomenon in turbulent core- 
annular flows. In the example of two-layer flow in an inclined channel, one imagines 
that separate layers of fluid, each of which has a constant average velocity, pass over 
each other as governed by gravity and an imposed pressure drop. It is assumed that the 
interface becomes unstable at a critical relative average velocity which is unspecified. 
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From these assumptions, a relation between the flow rates and the mean interfacial 
height is derived. We call this criterion a static-flooding criterion, since the condition 
does not include the dynamics of the flow explicitly. 

With this in mind, we relate the average velocities with the critical relative 
velocity v, 

___-- Q z  Q i -  - v,. 
1-h, h, 

We introduce the buoyancy sale v, 

v, = G(l -p)sinp, 

and thus define the volumetric-flow rates and velocities 

Q .  
qi = 2 ( i  = 1,2), 

Om 

to arrive at 42 41 - 
TV' 

- 
1-h, ho 

(5.1) 

To find the maximum flow regimes, and hence a criterion for flooding, we find the 
envelope of (5.2) 

qz +% = 0, 
(1 - ho)2 ht (5.3) 

where we have assumed that the flow rates are independent of the mean interfacial 
height. We note that qz < 0 and q1 > 0 for countercurrent flows, and thus find the 
relation for the mean interfacial height in terms of the flow rates 

I41 I h, = 
14111'2 + 14z11/2. 

Thus, this static-flooding criterion is given by 

1q11'/2 +mlq,ll/z = IrJ/', 

(5.4) 

(5.5) 

with, in this case, m = 1. Empirically, in order to take into acount entrance and exit 
effects under actual operating conditions, the slope of the straight line is in the range 
0.75 < rn < 1. This model still requires the additional value of r, to determine the 
flooding criterion, which when found empirically gives lrvl = 1. 

On the other hand, one can interpret that the presence of the hysteretic behaviour 
found for the 3KS equation is a precursor to laminar flooding. A necessary criterion 
for this behaviour to appear is that the wave-steepening coefficient (3.3) is small. Thus, 
we call the zero of this coefficient a dynamic-flooding criterion for laminar flow, which 
is given by 

where qD is the total volumetric-flow rate of both fluids within the channel. In this 
sense, we have a one-parameter family of criteria, since the mean interfacial height can 
be imposed based upon the volumetric-flow rate of one of the fluids. 

In an experimental situation, the adverse gas flow rate is increased with a fixed liquid 
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FIGURE 15. Plot of the dynamic-flooding criterion for an air-water system. Notice that the slope of 
the thin-water-layer branch rn = 0.68, which is similar to the slope found from the separated-cylinders 
model of 0.75 < rn < 1.  

flow rate until the critical flow rate is achieved. Figure 15, shows the dynamic-flooding 
criterion for an air-water system, with the upper curve corresponding to countercurrent 
flow with a thin water layer and the lower curve corresponding to countercurrent flow 
with a thin air layer. One determines from this figure, given the liquid flow rate ql, the 
adverse gas flow rate 1q.J at which the channel ‘floods’. The thin-water-layer branch is 
the one of more practical interest, and we find that the average slope of this branch is 
m z 0.68. The fact that the upper curve is nearly a straight line in the (lq11)1/2 versus 
(Iq2l)li2 plane is in reasonable agreement to the static-flooding criterion. One would not 
expect that the critical relative-velocity scale for a turbulent model could be ascertained 
from a viscous, laminar flow. 

The agreement of the slopes of the criteria is a surprising result, since the dynamic- 
flooding criterion is based on a viscous, laminar flow with strong surface-tension 
effects, while the separated-cylinders model assumes only a threshold value of the 
difference in average velocities, in which the wave dynamics of the interface is buried. 
The agreement may be fortuitous, especially considering the complex nature of actual 
flooding situations. However, we emphasize that the dynamic-flooding criterion is the 
first wholly non-empirical model for flooding which has the correct features. We stress 
that we have found only that there is a correlation between the laminar dynamic- 
flooding criterion and the turbulent-flow, static-flooding criterion; causation has not 
been demonstrated. Further, we have assumed that the dynamic-flooding criterion is 
a necessary condition for flooding and flow reversal to occur. This implies that this 
condition should be a conservative estimate at best. 
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6. Conclusions 
We have considered the long-wave dynamics of two-layer fluid flow in an inclined 

channel. In this system, we have assumed that the fluids are immiscible, viscous, and 
incompressible, and that they possess different physical properties. We have included 
the effects of gravity, shear, and surface tension. We have studied this system using 
long-wave theory with our focus centred on the long-wave interfacial stability of two- 
layer flow, The Reynolds number of each phase is fixed. 

Firstly, we derived a strongly nonlinear evolution equation that describes the motion 
of the interface for long waves. A weakly nonlinear analysis of similar equations in 
single-phase thin films yields in a moving coordinate frame the Kuramoto-Sivashinsky 
(KS) equation, where the quadratic nonlinearity is a measure of the wave steepening. 
However, in two-layer flows, the coefficient of this term can be zero, in which case other 
nonlinear effects come to the fore. Through a rescaling, one finds in this situation a KS 
equation with an additional cubic term, which we call the 3KS equation. The inclusion 
of the cubic nonlinearity breaks the reflectional symmetry found in the KS equation, 
in addition to the Galilean invariance found in the KS equation. 

Next, we compared spatially periodic solutions of the KS equation with solutions of 
the 3KS equation. Through a weakly nonlinear analysis of the 3KS equation, we found 
that steady-state solutions of the KS equation become travelling waves in the 3KS 
equation, with the wave speed proportional to the strength of the cubic nonlinearity 
and hence the loss of reflectional symmetry. We found that the symmetry-breaking 
bifurcation of the KS equation from steady-state solutions to travelling-wave solutions 
is destroyed with the inclusion of the cubic nonlinearity. The structural instability of 
the symmetry-breaking bifurcation is generic to the unfolding of a pitchfork 
bifurcation. Further, we noticed that the range of bifurcation parameter values, in 
which the left-travelling wave is stable, is increased with the inclusion of the cubic 
nonlinearity, while that of the right-travelling wave is decreased. 

As the strength of the cubic nonlinearity is increased, we found the formation of an 
isolated branch of larger-amplitude travelling waves. These solutions are not related to 
the KS equation; some of the solutions are locally stable. The size of the isola is 
sensitive to changes in the strength of the cubic nonlinearity. As the strength of the 
cubic nonlinearity is further increased, a region of bistability develops. Both the larger- 
amplitude travelling wave of the isola and the smaller-amplitude left-travelling wave 
from the KS equation are stable for a given range of total volumetric-flow rates. 
Further increasing the magnitude of the cubic nonlinearity results in a coalescence of 
the isola and the primary bifurcating branch, leaving in its wake a hysteresis loop 
between the smaller- and larger-amplitude travelling waves. Weakening the effect of 
the quadratic nonlinearity destroys the hysteresis loop, and the quartic relation 
between the solution amplitude and the bifurcation parameter is approached, as seen 
in the local analysis of the 3KS equation with no quadratic nonlinearity. We compared 
the limit in which the 3KS equation describes the weakly nonlinear dynamics to the 
phenomenologically-based separated-cylinders model, and found qualitative agree- 
ment between the two cases. 

The physical implications of this analysis are two-fold. First, we are considering the 
implications of perturbations to the KS equation. As mentioned earlier, the KS 
equation has been derived in a variety of physical systems, including the description of 
the interfacial behaviour of single-phase falling film. We have noted that certain 
perturbations of this equation can change the bifurcation structure, and alter the 
stability of solutions of the original equation. This behaviour has recently been seen in 
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a work by Chang, Demekhin & Kopelevich (1993) concerning single-phase falling 
films. After deriving a system that governs the motion of the interface for moderate 
Reynolds numbers, they present the bifurcation diagram of the KS equation, and 
changes which occur when other nonlinear effects are included. These changes include 
the destruction of the symmetry-breaking bifurcation from cellular solutions to 
travelling waves. Hence, elements of our study relate as well to the phenomena of 
single-phase falling films. 

The second implication relates to two-phase flows. The 'large '-amplitude solutions 
found in our study are reminiscent of those seen in Papageorgiou et al. (1990). In their 
study, a core-annular flow is studied in the limit of a thin-annular layer along the 
cylinder wall. They derive a modified KS equation, with the inclusion of an integral 
term over the length of the cylinder, which represents the effects of the dynamics of the 
core on interfacial motion. They report that for parameter ranges where chaotic 
solutions are found for the KS equation, travelling-wave solutions are seen in their 
modified equation. This is analogous to the bifurcation diagram of the 3KS equation, 
where the larger-amplitude travelling waves exist for sufficiently strong cubic 
nonlinearities. In fact, the cubic nonlinearity in the 3KS equation is a result of the 
second phase contributing to the dynamics of the interface. Thus, we see that this 
behaviour is common to both the simpler Cartesian geometry as well as the cylindrical 
geometry. 

Finally, we need to comment on the significance of the hysteresis loop found in this 
study and the phenomenon of flooding. This hysteresis loop reveals a transition 
between smaller- and larger-amplitude travelling waves, each transition occurring at a 
different total volumetric-flow rate. This is reminiscent of the phenomenon of flooding, 
in the sense that the transition from smaller-amplitude travelling waves to larger- 
amplitude travelling waves (flooding) occurs at a total volumetric-flow rate beyond the 
opposite transition (flow reversal). However, we note that the hysteresis loop is derived 
from a small-amplitude theory, whereas large-amplitude waves, of the order of the 
channel thickness, are known to appear during the flooding transition. Hence, in order 
to understand the large-amplitude significance of the hysteresis loop presented here, one 
must analyse the strongly nonlinear evolution equation derived earlier. From such an 
analysis, one would be able to better determine the large-amplitude consequences of 
these jump transitions, and better understand their relation to flooding. 

This work was supported by a grant from the Office of Basic Sciences, Department 
of Energy. BST would also like to thank Professors H. Riecke and A. J. Bernoff for 
lively discussions and their insights into this problem. 

Appendix A. Derivation of the O(e) portion of the evolution equation with 
flow rate fixed 

We detail the steps in the derivation of the O(e) correction to the evolution equation 
for fixed volumetric flow rate. 

From (2.25), we can find the first perturbation to the velocity field: 
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pi) - (0 ( 6 )  (0  (i) ( i )  
g - uor + uo uo, + W o  uog 
- - Q2Fil) cc + QG( 1 -p )  qt) sin/3+ [G(1 -p )  sin f 1 2  e?), 

with 

F1')(5; h, Ic) = g1,1(h ; P) c + k?lj,(h ; P) c5 + g,,,(h ; P) c4 + g,,,(h ; Ic) s 
r'""'(5; h7p) = g,,,(kPU)(5- 1>"+g,,,(h;P)(5- 

+ g2,3(h ; (5- l4 + g2,4(h ; p) (5- 1'' 
From continuity of tangential velocity, and continuity of shear stress conditions at 

the interface, we can solve for y1  and y2 in terms of the pressure gradient perturbations 
a,, and a2,. Before we proceed, we introduce the convenient notation: 

(A 2)  

(A 3) 

1 [I,] = - F'"(h) - P ( h ) ,  

[ZSS] = pF?'(h) - FP'(h), 

Y 

where [Z,] is the jump in the x-component of the perturbation velocity due to the 
inertial interaction of the basic state, and [Iss] is the corresponding jump in perturbation 
shear stress. Thus, the jump conditions of velocity and shear stress at the interface 
become : 

71 - py, = (h - 1) "2, - ha,, + KssI h,, 

hy, - (h - 1) y - - (h - 1 ) 2  az5 -;h2al, + [I,] h,, 
1 

- 2p 

which yields as the solutions 

a -a"a, -12 a2, + p h , ,  
l -  2 , 2p 

y =-a a22 +J&,,+ a [I,] -",,I 
2 2 1, 2p &-1)h+ih,7 

y2 = -a, + - a,, + y(2)hg' a 2 2  a21 
2 2p 

To solve for the perturbation pressure gradient terms, we use the solution to the O( 1) 
y-momentum equation at the interface along with the integral constraint to get the 
system : 

"1,- "26 = @,, 

The solution to this system of equations is: 
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which determines the profile zt',") uniquely. We then use the conservation form of the 
kinematic boundary condition to arrive at the (2.26). The terms are found to be: 

C(h; A )  = SB,(h;p),  
with 

I ,  is the inertial contribution to the volumetric flow rate of the perturbation velocity 
field. 

The form of B(h, Q ,  A )  above is given to illustrate the different mechanisms involved. 
If one simplifies the expression as much as possible with a symbolic manipulator, one 
finds that it has the form: 

B(k  Q, 4 = G C. - 1) B,(h ;p)  cos /?+ Q2Dl(h; p, p)  

+ QG(1 -p )  Dz(h ; p, p) sin /?+ (G(1 -p) sin /?)",(/I; p, p), (A 10) 
with each Di having the form 

These terms are ratios of twentieth-degree polynomials in h, with coefficients that are 
polynomials in p of, at least, fifth degree. Owing to the complexity of these terms, we 
refrain from displaying them here, but they are shown in Tilley (1994). 

Finally, we show the forms of A ,  p l ,  and p z ,  as described in the text. 

D,(h; p, P )  = @,,(hi p) - D,,(h; PI. 

4ho ,p )  = [(I -ho)4-2phO(h0- l)(h:-ho+2)+pzh:]3, 
pl(h0, p) = 1 - 2h0 - 124 + 56hi - 98h: + 84hi - 28h: - 8hi + 9h: - 2h: 

+ pht( 12 - 80h0 + 196ht - 216hi + 84ht + 32hi - 36ht + 8hi) 
+pZhi(24 - 1 14h0 + 180ht - 84hi - 48h: + 54hi - 12/13 
+p3h:( 16 - 4815, + 28ht + 32hi - 3613; + 8h3 -p4hL(8 - 9h0 + 2/23 

pZ(h0, p) = 2ho( 1 -ho) [( 1 - h0)" +ph0(6 - 66h0 + 295h: - 734hi + 1 154h: 
- 1226hi + 9 16h: - 490hi + 184ht - 44h: + 5hF) +  hi( 16 - 146h0 + 508hi 
-934h:+ 1058h:-832hi+496h:-222hi+66h:- 10h:)+p3hi(16- 10415, 
+ 242ht - 286h: + 236h: - 182hi + 1 12h: - 44hi + 10h:) 
-p4h:(8-10h0- 1lh;+ 19h~-llh~+5h5,-h6,)]. 
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The characteristic equation is the basis of checking the validity of the evolution 
equation. Our characteristic equation agrees exactly with that found in Yih (1967), and 
the numerical calculated examples given in Yiantsios & Higgins (1988). Further, for the 
inclined case, particular examples were checked with a linear analysis of the full system 
for arbitrary wavenumber (see Tilley et al. 1994). 

Appendix B. Weakly nonlinear analysis of the 3KS equation 

1 ,2 , .  ..,along the basic state, we let 
To find the local behaviour of the 3KS equation local to the bifurcation points k = 

h = k2 + 62 ,  

7 = €,t, 

u(x, 7) = E U I ( X ,  7) + €,U,(X, 7) + . . . 
and expand the 3KS equation in powers of e. At O(e), we find 

Lu,  ~ ~ ~ ~ ~ ~ + k ~ u ~ ~ ~  = 0, 

ul(x, 7) = A1(7) eikx +c.c. + B1(7), 
which has the solution 

where C.C. denotes the complex conjugate. At O(e2), 

Lu, = -aul U I X  

= -a[ikAl(7) B1(7) eikx + ikAq eZikx + c.c.]. 

By solvability, B1(7) = 0, since A,(7) = 0 is simply the basic state. Hence the solution 
for u, is 

ia 
u,(x, 7) = A2(7) eikx -- 2k3 A ;  eziks + C.C. + ~ ~ ( 7 ) .  

At O(2)>, solvability requires a Landau equation for A , :  

k, = 6k2A, -ikaB,(.r) A1(7) - (B 2) 

At O(e4), we find tkat 8, = 0, which shows that the linear effect of a constant 
perturbation results in a waveform travelling as a function of that wavespeed. This is 
expected, since the KS equation has the property of Galilean invariance. Since we are 
concerned with nonlinear effects, we choose B, = 0. 

A1(7) = p(7) ei0('), 

We can find the solution to (B 2) in the form 

to get the system 

p6, = -ykp3. 

The amplitude equation is Riccati's equation, which has the solution for 6 > 0 

126 
p = f k 2  ( a2 + 126k4 exp (- 2k267) 
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and for long times approaches a constant value. Thus, we find for long time behaviour 

1241 - ( A  - k2)1’2, 

c - ylu12. 

R E F E R E N C E S  

ASTON, P. J. 1991 Physica D 52, 415. 
ASTON, P. J.,  SPENCE, A. & Wu, W. 1992a SIAM J .  Appl. Maths 52, 792. 
ASTON, P. J.,  SPENCE, A. & Wu, W. 19926 Intl Ser. Numer. Maths 104, 35. 
BANKOFF, S. G. & LEE, S. C. 1986 In Multiphase Science and TechnologJJ (ed. G. F. Hewitt, J. M. 

Delhaye & N. Zuber) p. 95. Hemisphere. 
BENJAMIN, T. B. 1957 J .  Fluid Mech. 2, 554. 
BENNEY, D. J. 1966 J. Maths Phys. 45, 150. 
CHANG, H. C. 1986 Chem. Engng Sci. 41, 2463. 
CHANG, H. C., DEMEKHIN, E. A. & KOPELEVICH, D. 1. 1993 J .  Fluid Mech. 250, 433. 
CHARRU, F. & FABRE, J. 1994 Phys. Fluids 10, 1223. 
CHEN, L. H. & CHANG, H. C. 1986 ChenT. Engng Sci. 41, 2477. 
DEMEKHIN, Y. A., TODAREV, G. Yu. & SHKADOV, V. YA. 1991 Physica D 52, 338. 
DOEDEL, E. J. 1981 Congressus Numerantium 30, 265. 
DRAZIN, P. G. 1992 Nonlinear Systems. Cambridge University Press. 
FOWLER, A. C. & LISSETER, P. E. 1992 SIAM J .  Appl. Maths 52, 15. 
FRISCH, U., SHE, Z. S. & THUAL, 0. 1986 J .  Fluid Mech. 168, 221. 
GOLUBITSKY, M. & SCHAEFFER, D. G. 1985 Singularities and Groups in Bfurcation Theory. Springer. 
HOOPER, A. P. & GRIMSHAW, R. 1985 Phys. Fluids 28, 37. 
HYMAN, J. M. & NICOLAENKO, B. 1986 Physica D 18, 113. 
JOO, S. W., DAVIS, S. H. & BANKOFF, S. G. 1991 J .  Fluid Mech. 230, 117. 
KEVREKIDIS, I .  G., NICOLAENKO, B. & SCOVEL, J. C. 1990 SIAM J .  Appl. Maths 50, 760. 
MATKOWSKY, B. J. & REISS, E. L. 1977 SIAM J .  Appl. Maths 33, 230. 
PAPAGEORGIOU, D. T., MALDARELLI, C. & RUMSCHITZKI, D. S. 1990 Phys. Fluids A 2, 340. 
PAPAGEORGIOU, D. T. & SMYRLIS, Y. S. 1991 Theoret. Comput. Fluid Dyn. 3, 15. 
SCHLANG, T. 1984 Nonlinear stability analysis of problems in thin film fluid theory. PhD thesis, 

SCOVEL, J. C., KEVREKIDIS, I. G. & NICOLAENKO, B. 1988 Phys. Lett. A 130, 73. 
SMITH, M. K. 1990 J .  Fluid Mech. 217, 469. 
TILLEY, B. S. 1994 Stability of two-layer flow in an inclined channel. PhD thesis, Department of 

TILLEY, B. S., DAVIS, S. H. & BANKOFF, S. G. 1994 Linear stability theory of two-layer fluid flow in 

WALLIS, G. B. 1969 One-Dimensional Two-Phase Flow. McGraw-Hill. 
YIANTSIOS, S. G. & HIGGINS, B. G. 1988 Phys. Fluids 31, 3225. 
YIANTSIOS, S. G. & HIGGINS, B. G. 1989 Phys. Fluids A 1, 1484. 
YIH, C. S. 1955 Proc. 2nd US Congr. Appl. Mech., Am. Soc. Mech. Engrs. p. 623. 
YIH, C. S. 1967 J .  Fluid Mech. 27, 337. 

Department of Applied Mathematics, Tel Aviv University. 

Engineering Sciences and Applied Mathematics, Northwestern University. 

an inclined channel. Phys. Fluids (to appear). 




